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We show that the circular hydraulic jump can be qualitatively understood using 
simplified equations of the shallow-water type which include viscosity. We find that the 
outer solutions become singular at a finite radius and that this lack of asymptotic states 
is a general phenomenon associated with radial flow with a free surface. By connecting 
inner and outer solutions through a shock, we obtain a scaling relation for the radius 
Rj of the jump, R3 - Qb-gg-i, where Q is the volume flux, v is the kinematic viscosity 
and g is the gravitational acceleration. This scaling relation is valid asymptotically for 
large Q. We discuss the corrections appearing at smaller Q and compare with 
experiments. 

1. Introduction 
The circular hydraulic jump appears when a vertical jet of fluid is directed upon a 

horizontal surface and spreads out radially. At a certain radius one observes a sudden 
increase in the height of the fluid, the mean position of which does not change with 
time. It is a striking and familiar phenomenon easily observed in a kitchen sink, for 
example. Nevertheless, there does not seem to be any simple theory which can explain 
the origin of the jump or give a reasonable estimate of the radius at which it occurs. 

In his famous paper on shocks in channel flow (river bores), Lord Rayleigh (1914) 
shows that continuity of mass and momentum flux across the shock is enough to 
determine t, (the flow velocity along the channel) and h (the height of the fluid) after 
the jump if they are known before the jump. Consequently, the energy is apparently not 
conserved across the jump. The lack of energy conservation is usually attributed to 
dissipation in the jump region and to turbulence generated after the jump. 

The radial flow of an ideal fluid has two different steady states which, for large radius 
r,  behave as u - const(h N l / r )  and u - l / r ( h  - const). It is thus tempting to regard 
the jump as a 'kink' connecting these two states, and it is in fact possible to fit a shock 
(a discontinuous kink) between them just as in the linear case mentioned above. There 
is, however, an important difference between channel flow and radial flow. In the 
former, the shock always propagates, whereas in the latter, the position is fixed 
although it may fluctuate. Continuity of mass flux and momentum flux is possible at 
any radius and thus, in the radial case, one more condition is needed in order to 
determine the radius of the jump. This extra condition could, for example, be the 
magnitude of the energy loss across the jump, but we know of no simple expression for 
this quantity. As we shall see below, we believe that such an expression should contain 
the viscosity in an essential way. 
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One might question whether it is reasonable that the jump radius should depend 
strongly on the viscosity. One has to remember, however, that the fluid layer before the 
jump becomes very thin and will therefore be subjected to a large shear stress. In fact, 
one can study simple generalizations of shallow-water theory in which the viscous 
stresses are taken into account in an approximate way by assuming some form for the 
velocity profile. This was attempted by Kurihara (1946) and Tani (1949) and is 
analogous to some approaches to flow in inclined channels (see e.g. Whitham 1974). A 
major problem for the Kurihara-Tani theory is, however, the lack of asymptotic 
steady-state solutions. In the inclined channel a steady-state solution is easily found by 
balancing the projection of gravity along the channel against the viscous damping, but 
in the radial case (with no inclination) the theory breaks down at a certain radius. 
Outside this radius there are no well-behaved asymptotic solutions. 

The lack of asymptotic solutions turns out to be a very general phenomenon not 
specifically related to the Tani-Kurihara theory. If we assume that the velocity 
becomes small at some radius much larger than the jump radius, we can linearize the 
Navier-Stokes equations (in the boundary-layer approximation), and we then find that 
there are no asymptotic solutions. In fact, a stronger statement can be proved: within 
the full nonlinear boundary-layer theory and with some rather mild assumptions about 
the velocity, there are no asymptotic radially spreading solutions (Putkaradze & Rugh 
1992). Of course, any real system is finite and we shall show in 53 that the outer 
solution becomes physically meaningful if we regard the point at which it becomes 
singular as corresponding to the edge of the plate, where the fluid drops off. 

A closer look at the hydraulic jump suggests that it is not as simple as it appears. 
Experimental work by Tani (1949) and Craik et al. (1981) has shown that the jump 
region contains an eddy, whose inner edge determines the position of the jump. Other 
experiments (Watson 1964; Olsson & Turkdogan 1966; Nakoryakov, Pokusaev & 
Troyan 1978; Ishigai et al. 1977) also show that the flow is more complicated than the 
ideal version described above. This is also borne out in detailed simulations (Khalifa 
& McCorquodale 1992) of the jump region. At large flow rates, the flow becomes 
turbulent and the jump becomes ill defined and strongly fluctuating, including 
substantial breaking of the radial symmetry. In the following we shall restrict our 
attention to the laminar state which is found at small flow rates. Here the flow appears 
to be stationary and the jump is experimentally very well defined. We believe that our 
version of shallow-water theory can capture the rough features of this flow, although 
it does not take into account appropriately the separation which very likely occurs in 
the boundary layer (Bowles & Smith 1992). Thus the use of shallow-water theory 
prevents us from studying the detailed flow in the jump region, which, in our theory, 
is represented by a stationary shock. 

The layout of the paper is as follows. Section 2 is devoted to ideal shallow-water 
theory for a radially symmetric system. Our main conclusion is that the ideal shallow- 
water equations do not allow a determination of the position of the hydraulic jump. 
Thus we turn in $3 to the viscous theory. Section 3.1 introduces the boundary-layer 
equations for this problem and in $3.2 the viscous shallow-water equations are 
obtained by averaging. It is noted that they do not allow decaying asymptotic solutions 
as r - t  co. In $3.3 we show that the lack of decaying asymptotic solutions can be seen 
directly from the boundary-layer equations in their linearized form. We are then ready 
in $3.4 for the determination of the position of the hydraulic jump within viscous 
shallow-water theory and we compare our predictions with experiments. Finally, 0 3.5 
deals with extensions of shallow-water theory in the presence of additional pressure 
drops. 
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2. Ideal shallow-water flow 
We will first consider an ideal fluid. Since the thckness of the flow is everywhere very 

small and purely radial, we shall attempt to describe it with the shallow-water 
equations. (The accuracy of these equations is discussed in Courant & Friedrichs 1948, 
for example.) The equations for such a flow are 

ah l a  -+--{rhv} = 0, 
at rar  

where v(r, t )  is the radial velocity, h(r, t )  is the height of the fluid, and g is the 
acceleration due to gravity. These two equations can be combined and rewritten as 
follows : 

-(hv)+--{rh(02+iggh)) a i a  = gh2 -, 
at r ar 2r 

a i a  at (:h(v2 + gh)) + - - {rhv(iv2 + gh)) = 0. r ar 

(3) 

(4) 

Equations (2)  and (4) describe conservation of volume and energy, respectively. 
Equation (3) is the equation of motion for the radial momentum, which is not 
conserved. 

For a stationary flow the shallow-water equations become 

dv dh vz = -g-&, 

I d  --{rho} = 0. 
r dr 

Upon integration, we find 
rhu = Q / 2 x  

iv2+gh = Q,/Q, 

( 5 )  

where Q is the volume flux and Qe is the energy flux per unit mass density. With the 
substitution 

(7) and (8) can be written in the dimensionless form 
“, 

?h5= 1, 

P+R = 1.  

The solution to (10) and (11) can be written as 

A plot of this function is shown in figure 1. It should be noted that there is a minimum 
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- r 
FIGURE 1.  Solution for a(?) from (12) using the inviscid shallow-water equations. 

radius = id3 below which there are no physical solutions. Thus, there are two 
continuous stationary solutions of the radial shallow-water equations with different 
asymptotic (large r )  behaviour: v+const and u - l /r.  These solutions seem to agree 
with the observed behaviour before and after the jump, respectively (Olsson & 
Turkdogan 1966). 

Equations (2H4) imply the following continuity conditions across a stationary 
discontinuity in the flow (Whitham 1974): 

[ ~ h ]  = 0, 
[h(U2 +kh)] = 0 ,  
[hU(+u2 +gh)] = 0, 

where the square brackets denote the difference of the enclosed quantities across the 
discontinuity. These equations are identical to those obtained in the channel flow 
problem (Rayleigh 1914). Even though the radial momentum is not conserved during 
the flow, it is still continuous across the jump since the right-hand side of (3) contains 
no derivatives (see e.g. Whitham 1974). Obviously, all three conditions cannot be 
satisfied simultaneously. If we assume continuity of volume and momentum flux, there 
must be a discontinuity in the energy flux per unit mass density given by 

Q -Q =-- gQ (h2 - M3 
8x h,h2 ' e2 e l  

where the subscripts 1 and 2 refer to the values of the associated quantities on either 
side of the discontinuity. Thus, if h, > h,, the difference is negative, i.e. energy is 
dissipated at the jump. Also, since the energy loss is a monotonic function or r ,  there 
is apparently no special radius that might indicate the position of the discontinuity. 
Watson (1964) uses the conservation laws for mass and momentum flux to determine 
the position of the jump but requires knowledge of the height after the jump as an 
additional parameter. 

It is often stated that the position of the jump can be found from the requirement 
that the fluid should be critical at the jump, meaning that the fluid velocity u should 
equal the velocity of gravity waves on the surface. Using the Froude number 
Fr = u2/gh, we see from (12) that criticality (Fr = 1) implies that r" = Frnfn. Furthermore, 
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the upper branch of u(r) in figure 1 is always supercritical (Fr > 1) and the lower 
subcritical (Fr < l), so the criterion of criticality cannot be used to determine the 
position of the jump. 

3. Viscous theory 
As seen in the last section, there seems to be no way of obtaining the jump from an 

inviscid theory. When one includes viscosity, a new and obvious reason for an 
instability in the flow appears. If we assume that the flow inside the jump has a constant 
surface velocity and decaying height as seen in experiments (Olsson & Turkdogan 
1966), a very large shear stress builds up as the layer becomes thinner. This effect is 
accurately taken into account in the boundary-layer approximation (see e.g. Schlichting 
1968), where it is assumed that vertical velocities are small compared to radial velocities 
and that the vertical variations (through the layer) are much more rapid than those in 
the radial direction. 

3.1. Boundary-layer equations 
In cylindrical coordinates, the equations of motion of the fluid in the boundary-layer 
approximation are 

au au dh a2u 24-+w-=-g-+v- ar az dr az2' 

au u a w  -+-+- = 0, ar r az 
with the boundary conditions 

u(r, 0)  = 0, w(r, 0) = 0, 

= 0, r 1''' u(r, z )  dz = q. 

Now, u(r, z )  is the radial component of the velocity, w(r, z )  is the vertical component, 
and q = Q/27c. 

The boundary conditions (19) are not complete. We must cut off the equations at 
some radius r = ro larger than the jet radius, since at smaller radii the flow will be 
strongly affected by the vertical motion of the jet. Thus we must specify the radial 
velocity profile and the height at r = ro: 

u(r0,z) = u,(z), W,) = h,. (20) 
Equations (17)-(19) can be rewritten in dimensionless form with the substitution 

u = au", a = qsvggT, 1 

Dropping the tilde, the rescaled equations are then 

au au dh a2u u-+w-  = --+- 
ar az dr az2' 

au a w  -+-+- = 0, ar r az 
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with the boundary conditions : 
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u(r,O) = 0, w(r,O) = 0, 

& I  = 0, r l ( r )u(r ,z)dz = 1, u(ro,z) = -. U O W  ) (24) 
a z-h(r) 

The cutoff radius ro is chosen close to the vertical jet and therefore the velocity profile 
is assumed to be nearly constant, i.e. uo(z) = uo, since the boundary layer has not yet 
developed. Thus the boundary conditions depend essentially on a single parameter 
A = uo/a. 

3.2. Viscous shallow-water $ow 
To make further progress, we shall use a mean-value approach by averaging over the 
height of the fluid layer. Integrating (22) and (23) with respect to z and using the 
identity 

we obtain the following equations: 
- 
u- = ----- t : :;:Iz=; 

iirh = 1, 
where the bar denotes an average over z : f l r )  = (l/h)J:flr,z)dz. 

We now make the following approximations: 

where u = ii, and c1 and c2 are dimensionless constants of order unity. For a parabolic 
profile, for example, c1 = and c2 = 3. Substituting (28) into (26) and (27), and again 
rescaling such that v ?r c;: ci v ,  r + c\ c;f r ,  and h --f ci h, we now obtain 

00' + h' = - v/ha, (29) 
vhr= 1, (30) 

which are equivalent to the equations derived by Kurihara (1946) and Tani (1949). The 
corresponding equations for momentum and energy are now 

h2 1 I d  --{rh(v2+ih)} = --- r dr 2r bar' 
I d  1 - - { rhv(iv2 + h)} = - - 
r dr r2h3 * 

Combining (29) and (30) leads to 

A numerical solution of (33) leads to the typical integral curves shown in figure 2. 
These curves have in fact been obtained by solving the parametric equations: 
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FIGURE 2. Integral curves (solid lines) showing the solutions to (34). The dashed line is the linearized 
approximation (36) for the outermost solution. The dotted lines show where d ( r )  is infinite and zero. 
The dot-dashed line is the jumpline for the outermost solution, i.e. the corresponding solution to (46). 

and thus only segments where v is a unique function of r correspond to solutions of 
(33). The equations (34) have a focal point at (r,  u) = (1,l). This focus is the intersection 
of two curves: u = r-f(u’ = a) and u = r - ’ (d  = 0). It can be shown that (33) has no 
physical solutions as r + co. This follows from a theorem due to Hardy (1912) (see also 
Bellman 1970) regarding differential equations of the form, 

where Ax, y )  and g(x, y) are polynomial functions of both arguments. Hardy showed 
that such equations have only continuous asymptotic behaviour of the form ra(log r)lln 
or eP(‘)rb, where n is an integer and p(r) is a polynomial. It is easy to check that (33) 
does not have asymptotic behaviour of either of these forms and thus has none 
whatsoever. The behaviour at large r can be understood by trying the ansatz u = y / r  
in (34). This leads to 

and when the terms containing l /r  and l/r2 are neglected, the two equations become 
independent. Their solutions are r = ro ecS and y = (4s+yi4)-f, which can be combined 
to give 

This approximate solution cannot be extended to infinity. For any choice of r, and uo 
it will diverge at r, = roe~(rovo)-4 with the form 

v = y / r  = (1 / r )  [(ro o,)-~ - 4 log (r/ro)]-i. 

u = (l/r) [4 log (r8/r)]+. 

(36) 

(37) 
One such solution is shown as the dashed line in figure 2. It should be noted that it 
follows the real solution rather accurately until fairly close to the focus even though the 
values of r are not very large. In reality v does not diverge but d ( r )  does diverge. In the 
parametric representation the integral curves turn around making it impossible to 
continue out to infinity (as seen from (35)). 
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3.3. The lack of asymptotic states 
We shall now argue that the singular behaviour at r -+ 00 is not an artifact arising from 
the averaging over z. The same boundary-layer equations themselves display singular 
behaviour. Let us first rewrite the rescaled boundary-layer equations (22) and (24) in 
terms of the stream function Y ( r , z )  defined by the relations 

which ensures that the continuity equation (23) is identically satisfied. Equation (22) 
then becomes 

(39) 
i a p a  l a p  i a v a i a y  dh 1 a v  +-- dr r dz3’ 

- -- - -- 
r az ar 0 r az r ar azr  az 

with the boundary conditions 

Well beyond the hydraulic jump we now look for slowly decaying solutions where, 
at large enough radii, all velocities become small. At large distances such solutions 
should satisfy the linearized version of (39), but we shall see below that the linearized 
equations do not admit nice solutions as r + 00 and this contradicts our assumption 
concerning the existence of such decaying solutions. The linearized boundary-layer 
equation is 

dh - l a 3 Y  
dr r 3z3.  

- -- - 

It follows from this equation that Y is a cubic function of z.  The first two boundary 
conditions of (40) imply that it has the form Y = Ar) za +3%’z3, where the functionsflr) 
and h(r) are to be determined using the two remaining boundary conditions. Thus, 

(42) +rh’h3 + f ( r )  h2 = 1, rh‘h + 2f(r) = 0, 

and finally we find a differential equation for h only: 
h’h3 = - 3 / r ,  

h = (c - 12 log r):. 
with the solution 

(43) 

(44) 
The corresponding solution for Y is 

where 6 = z/h.  
The solution (44) is, except for a constant factor, identical to the solution (36) of the 

shallow-water equations. Again h = l/rv vanishes at some finite radius rs and is not 
defined beyond that. This means, of course, that the linearization of (39) (i.e. neglecting 
the first term) which was made in order to obtain (44) breaks down as r approaches rs 
and that our assumption that the velocities remain small is no longer valid. It can be 
shown that if the approximate solution (41) is used close to r,, the neglected nonlinear 
terms of (39) would diverge as (r, - r)-f and thus invalidate the solution. Therefore, the 

Y = 3352 - $), (45) 
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linearized equations tell us nothing about the nature of the singularity nor do they 
strictly prove that a singularity exists. For a restricted class of solutions it is known, 
however, that the singular behaviour is not remedied by taking into account the 
nonlinear terms in (39): for any solution which is analytic in z and l/r, the height must 
vanish for some finite r (Putkaradze & Rugh 1992). The precise nature of this 
singularity is, however, not known. It should be noted that similar behaviour occurs 
for the linearized theory in channel flow. There the only difference is that the factor l /r  
in (41) is missing. In this case, h will be a linear function of r and thus again vanishes 
at some finite radius. 

At first sight this lack of asymptotic solutions seems strange and unphysical. In fact, 
however, the hydraulic jump usually appears under conditions that do not allow simple 
asymptotic states. In a kitchen sink there is a backflow, and in a typical experiment the 
fluid only spreads to the end of a plate, where it then falls off. In the latter case, one 
might approximate the flow very closely by a solution where h vanishes at the outer 
edge. The linearized solution (44) (with the constant c chosen such that h+O at the 
edge of the plate) will then give an approximate solution except near the outer edge. 
We shall consider this possibility further in the next section. 

One should note that the lack of asymptotic states depends crucially upon the effect 
of gravity. Watson (1964) neglects gravitational effects and thus obtain states where 
u - r-3 and h - P .  He argues that the effect of gravity is small in the thin layer between 
the jet and the jump. This is, as we have shown, not true well beyond the jump. 

The boundary-layer approximation keeps only the ‘transverse’ viscous effects due to 
the rapid changes in the velocity field through the boundary layer. One can easily 
incorporate the ‘longitudinal’ effects in the shallow-water approach by adding the term 
v ( u ” + u ‘ / r - t ~ / r ~ )  to the right-hand side of the non-rescaled version of (33). This neither 
changes the spiralling nature of the integral curves leading to the breakdown of the 
inner solutions and, thus, to a sharp shock, nor produces asymptotic outer solutions. 
The same is true for surface-tension effects. 

3.4. Scaling of the hydraulic jump 
We have seen that although (33) has no real asymptotic solutions, it has well-defined 
outer solutions extending out to any given radius. In particular, for any radius rs, there 
is a solution for which u’(r)+ co precisely at r = rs, which, for large r ,  is given 
approximately by (37). In experiments, a stationary flow is usually maintained by 
letting the fluid drop off the edge of a circular plate having a radius much larger than 
the jump radius. If we identify the edge with the limiting radius rs, we have a unique 
outer solution which depends on the flow rate only through the rescaling factors. It will 
have essentially constant height until r M re, which is what we should expect, 

The inner solutions are likewise only defined in a limited range. As seen in figure 2, 
they will start spiralling in toward the focus at (r,u) = (1,l) or, more precisely, 
u’(r) -+ - co at some point r > 1. It now seems reasonable to determine the entire flow by 
fitting a shock which connects the inner and the outer solution as shown in figure 3. 
Since the equations for energy and momentum flux (31) and (32) contain no extra 
derivatives, the matching should still be done according to (13) and (14). If we denote 
the rescaled velocities before and after the jump as vl and u2 respectively, then they will 
be related by the equation 

u1 = w[l+(1+8uirp] 1 

(which is symmetric under interchange of u1 and vg). 
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FIGURE 3. The jump is interpreted as a discontinuity (dashed line) connecting the inner and outer 
solutions (solid lines) shown in figure 2. The jump does not pass through the focus, although it may 
appear to do so. 
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FIGURE 4. The dependence of the position of the jump r, on the singularity at rs, 

The choice of outer solution depends on r, as noted above, but the dependence is 
very weak as seen in figure 2. Small changes in u, right after the jump have a strong 
effect on r8 which follows from the approximate solution (37), which can be inverted 

(47) r, % epz, 
where u, denotes the outer solution at r = 1.  This means that no matter which large r, 
we choose, the outer solution will remain almost unchanged. Figure 2 shows the 
outermost solution with its corresponding jumpline (i.e. the solution of (46)) for 
r,  = 20.3. The jump occurs when the inner solution crosses this line. The spiralling 
nature of the inner solution and the large power of u appearing in (34) imply that, 
independently of the initial conditions chosen for the inner solution, the jump always 
occurs close to r = 1, as seen in figure 2. As noted earlier, the exact location of the jump 
does depend on r,. The dependence is, however, extremely weak as seen in figure 4. 
Here we show the dependence of r j  on r, for a typical inner solution. One can see that 

to give 1 4  
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FIGURE 5. Experimental data for the position of the jump Rj as a function of flux Q (from Dimon 
et al. 1992). The different data sets are for different nozzle heights (see text). Data from Tani (1949) 
are also shown. The solid line is the theoretical prediction for the position of the jump. 

we have to increase rs many orders of magnitude to have any significant effect on r j ,  
Thus, as long as rs 9 rj (but not astronomical), there is a strong selection of rj x 1 ,  
which means that the physical (i.e. non-rescaled) jump radius Rj scales as (21): 

Rj x y = cq%v-ig-t, (48) 
where the constant c depends on the velocity profile chosen in (28). For a parabolic 
profile, which we shall assume for definiteness, c x 0.73. 

To compare more directly with experiments, we have computed Rj(Q) for a range of 
Q with the (non-rescaled) value of the edge radius (radius of the plate) R, fixed and with 
a particular set of initial conditions for u. Fixing R, means that rs depends on Q as 
rs = R J y .  With c z 0.73 for a parabolic profile and v = 0.01 cm2/s, we find, 

r8 x 1.8Q-gR, (49) 
in c.g.s units. For the inner boundary conditions, we have assumed that the shape of 
the spreading jet is independent of Q, which means that the physical velocity V at a 
fixed point R, varies linearly with Q :  

where H ,  is the height of the fluid layer at r = R,, which is assumed to be independent 
of Q. The scaled boundary conditions are then found from V(Ro) = mv(l.8Q-fRo) or 

In figure 5 we show data from Dimon et al. (1992) for the radius of the hydraulic 
jump as a function of flux when the flow is stationary. In this experiment, a jet of water 
from an 8 mm diameter nozzle impinges on a plate 40 cm in diameter. A small amount 
of soap (0.04% by volume) was added to the water to facilitate even wetting of the 
plate. The flux was controlled with a constant-head tank and measured directly at the 
nozzle. The range in Q corresponds to 1 < Fr(Ro) < 80. The jump radius was 
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determined with a precision telescope. The height of the nozzle was varied to see the 
effect of changing the boundary condition H,(R,). A typical value is H ,  = 0.05 cm 
when R, = 1 cm (which is also comparable with the values measured by Olsson 
& Turkdogan 1966). Using this value and R, = 20 cm, we have computed the 
corresponding jump radius R, which is also shown in figure 5. With the above 
boundary condition, the theoretical curve cannot be continued below Q x 3 cm3/s 
since R, will become less than R,. The theoretical curve is not strongly sensitive to the 
specific choice of H,. Variations in H,  by a factor of two up or down only changes R5 
on the order of 10 YO. A fit to the experimental data with the power law Ri - Q" yielded 
0.75 < K < 0.82 over the different data sets shown. Similar scaling is found for the 
computed R5 (K x 0.75). We also include older data from Tani (1949) for comparison. 
The deviation of the exponent K from in (48) can be thought of as a finite size effect. 
In other words, we believe that the apparent power laws seen in figure 5 are not really 
asymptotic, but are affected by correction terms to (48). 

The results from the theory are surprisingly good considering the many 
approximations made in order to obtain the shallow-water equation (33). In this 
equation, both the longitudinal viscosity terms and the surface tension are neglected. 
As noted earlier, they do not change the qualitative behaviour (i.e. they do not smooth 
out the jump in the simplified theory), but they might modify the effective exponents 
seen at small Q. Also, the choice of boundary conditions is a possible source of error. 
When the fluid strikes the horizontal surface, a very complicated process takes place 
which is not well understood. In order to use boundary-layer theory, one must assume 
that the vertical velocity components are small compared to the horizontal components. 
This is certainly not the case close to the impinging jet and it is not clear precisely where 
it becomes valid. More fundamentally, the averaging performed in (28) becomes 
invalid if the boundary-layer undergoes separation. Tani (1949) assumed that the ratio 
of w to u is linear in z and showed that the boundary-layer equations then lead to 
separation at some radius. The same scaling (48) holds for this separation radius, since 
his solution for the velocity profile is only valid if the velocity profile at the inlet is also 
of this form, and then both the equations and the boundary conditions can be rescaled 
according to (21). The belief that separation occurs near the jump is further supported 
by recent work (Bowles & Smith 1992) and, as noted in the Introduction, this makes 
it clear that our approximate theory can only be used well beyond the jump region. 

3.5. Inclusion of an additional pressure drop 
It is interesting to note that if the flow is subjected to an additional pressure gradient 
not of the boundary-layer-hydrostatic type, the problems connected with the lack of 
asymptotic states may disappear. This can happen if, for example, the plate is curved. 
If such pressure gradients do not fall off too slowly, they regularize the problem by 
ensGng that asymptotic states exists. This is clear in the one-dimensional problem of 
flow down an inclined channel (Whitham 1974; Pumir, Manneville & Pomeau 1983). 
There the balance between the slope and the viscous damping produces a steady mean 
flow. 

It is easy to test the consequences of an additional pressure drop. Let us assume, for 
example, that an additional pressure gradient p - pr-7 is acting at large r .  If we insert 
this additional term in the linearized boundary-layer equation (41), we find, instead of 
(43), the expression 

For any 7 < 1 ,  the additional term dominates and we get the regular asymptotic 
behaviour h(r) + P where a = i(7 - 1). 
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r 

The same relations hold for the shallow-water equation (33). Inserting an extra 
pressure gradient as above leads to the equation 

and again if 7 < 1, there are asymptotic solutions. In figure 6 we show numerical 
solutions of (53) with 7 = 1, and (a)  p = 1 and (b) p = 2.5. For p = 1, the inner 
solutions still spiral although an outer solution now exists all the way to infinity. For 
larger p, the spiralling disappears and we find a smooth kink-like solution connecting 
the two states. The behaviour around the focal point (which shifts with p) changes from 
damped to overdamped oscillations, and for large p, the solution passes right through 
the fixed point without spiralling. 
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